3.2.35 \(\int \frac {\sec ^4(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx\) [135]

Optimal. Leaf size=145 \[ -\frac {75 \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {13 \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {9 \tan (c+d x)}{4 a^2 d \sqrt {a+a \sec (c+d x)}} \]

[Out]

-75/32*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)-1/4*sec(d*x+c)^2*tan(d*
x+c)/d/(a+a*sec(d*x+c))^(5/2)+13/16*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^(3/2)+9/4*tan(d*x+c)/a^2/d/(a+a*sec(d*x+c)
)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.20, antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3901, 4093, 4086, 3880, 209} \begin {gather*} -\frac {75 \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}+\frac {9 \tan (c+d x)}{4 a^2 d \sqrt {a \sec (c+d x)+a}}-\frac {\tan (c+d x) \sec ^2(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}+\frac {13 \tan (c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^4/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(-75*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - (Sec[c + d*x]
^2*Tan[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) + (13*Tan[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2)) + (9
*Tan[c + d*x])/(4*a^2*d*Sqrt[a + a*Sec[c + d*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 3901

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-d^2)
*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 2)/(f*(2*m + 1))), x] + Dist[d^2/(a*b*(2*m + 1)),
Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n + 2)*Csc[e + f*x]), x], x] /;
FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[
m])

Rule 4086

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*B*m + A*b*(m + 1))/(b
*(m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B
, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 4093

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(b*f*(2*m + 1))), x] + Dist[1/(b^2*(
2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*m - a*B*m + b*B*(2*m + 1)*Csc[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\sec ^4(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx &=-\frac {\sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {\int \frac {\sec ^2(c+d x) \left (2 a-\frac {9}{2} a \sec (c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac {\sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {13 \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {\int \frac {\sec (c+d x) \left (-\frac {39 a^2}{4}+9 a^2 \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{8 a^4}\\ &=-\frac {\sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {13 \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {9 \tan (c+d x)}{4 a^2 d \sqrt {a+a \sec (c+d x)}}-\frac {75 \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=-\frac {\sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {13 \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {9 \tan (c+d x)}{4 a^2 d \sqrt {a+a \sec (c+d x)}}+\frac {75 \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=-\frac {75 \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\sec ^2(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {13 \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {9 \tan (c+d x)}{4 a^2 d \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.73, size = 125, normalized size = 0.86 \begin {gather*} \frac {\left (-150 \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x)+\sqrt {1-\sec (c+d x)} \left (49+85 \sec (c+d x)+32 \sec ^2(c+d x)\right )\right ) \tan (c+d x)}{16 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^4/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

((-150*Sqrt[2]*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*Cos[(c + d*x)/2]^4*Sec[c + d*x]^2 + Sqrt[1 - Sec[c + d*
x]]*(49 + 85*Sec[c + d*x] + 32*Sec[c + d*x]^2))*Tan[c + d*x])/(16*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x
]))^(5/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(315\) vs. \(2(122)=244\).
time = 0.12, size = 316, normalized size = 2.18

method result size
default \(-\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (-1+\cos \left (d x +c \right )\right )^{2} \left (75 \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right ) \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+150 \sin \left (d x +c \right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \cos \left (d x +c \right )+75 \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+98 \left (\cos ^{3}\left (d x +c \right )\right )+72 \left (\cos ^{2}\left (d x +c \right )\right )-106 \cos \left (d x +c \right )-64\right )}{32 d \sin \left (d x +c \right )^{5} a^{3}}\) \(316\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^4/(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/32/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(75*sin(d*x+c)*cos(d*x+c)^2*ln(-(-(-2*cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+150*sin(d*x+c
)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin
(d*x+c))*cos(d*x+c)+75*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos
(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+98*cos(d*x+c)^3+72*cos(d*x+c)^2-106*cos(d*x+c)-64)/sin(d*x+c)^5/a^3

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^4/(a*sec(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [A]
time = 2.38, size = 404, normalized size = 2.79 \begin {gather*} \left [-\frac {75 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \log \left (-\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right )^{2} - 2 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left (49 \, \cos \left (d x + c\right )^{2} + 85 \, \cos \left (d x + c\right ) + 32\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, \frac {75 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + 2 \, {\left (49 \, \cos \left (d x + c\right )^{2} + 85 \, \cos \left (d x + c\right ) + 32\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[-1/64*(75*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(-a)*log(-(2*sqrt(2)*sqrt(-a)*
sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - 3*a*cos(d*x + c)^2 - 2*a*cos(d*x + c) + a)
/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*(49*cos(d*x + c)^2 + 85*cos(d*x + c) + 32)*sqrt((a*cos(d*x + c) +
a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d),
 1/32*(75*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(
d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) + 2*(49*cos(d*x + c)^2 + 85*cos(d*x + c) + 32
)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3
*d*cos(d*x + c) + a^3*d)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sec ^{4}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**4/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Integral(sec(c + d*x)**4/(a*(sec(c + d*x) + 1))**(5/2), x)

________________________________________________________________________________________

Giac [A]
time = 1.22, size = 188, normalized size = 1.30 \begin {gather*} \frac {\frac {\sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} {\left ({\left (\frac {2 \, \sqrt {2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {17 \, \sqrt {2}}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \frac {83 \, \sqrt {2}}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a} + \frac {75 \, \sqrt {2} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{32 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

1/32*(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*((2*sqrt(2)*tan(1/2*d*x + 1/2*c)^2/(a^2*sgn(cos(d*x + c))) + 17*sqrt
(2)/(a^2*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)^2 - 83*sqrt(2)/(a^2*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)
/(a*tan(1/2*d*x + 1/2*c)^2 - a) + 75*sqrt(2)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/
2*c)^2 + a)))/(sqrt(-a)*a^2*sgn(cos(d*x + c))))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\cos \left (c+d\,x\right )}^4\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^4*(a + a/cos(c + d*x))^(5/2)),x)

[Out]

int(1/(cos(c + d*x)^4*(a + a/cos(c + d*x))^(5/2)), x)

________________________________________________________________________________________